Numerical simulations of the Kelvin-Helmholtz instability in radiatively cooled jets
نویسنده
چکیده
We present the results of simulations of the development of the Kelvin-Helmholtz (KH) instability in a cooled, slab symmetric system. The parameters were chosen to approximate the physical conditions typically found in jets from young stellar objects (YSOs). The effect of different methods of maintaining the initial equilibrium were examined for varying density. In addition, the effect of adjusting the width of the shear layer between the jet and ambient material was studied and found not to have significant long-term effects on the development of the instability. We find that, in general, cooling acts to – increase the level of mixing between jet and ambient material through the ‘breaking’ of KH induced waves on the surface of the jet – increase the amount of momentum transferred from jet material to ambient material – increase the time taken for shocks to develop in the flow – reduce the strength of these shocks – reduce the rate of decollimation of momentum flux The first and second of these results appear to contradict the conclusions of Rossi et al. (1997) who carried out a similar study to ours but in cylindrical symmetry. It is found, however, that the differences between slab and cylindrical symmetry, while insignificant in the linear regime, explain the apparent discrepancy between our results and those of Rossi et al. (1997) in the non-linear regime.
منابع مشابه
The Stability of Radiatively Cooled Jets in Three Dimensions
The effect of optically thin radiative cooling on the Kelvin-Helmholtz instability of three dimensional jets is investigated via linear stability theory and nonlinear hydrodynamical simulation. Two different cooling functions are considered: radiative cooling is found to have a significant effect on the stability of the jet in each case. The wavelengths and growth rates of unstable modes in the...
متن کاملنا پایداری کلوین - هلمهولتز در اسپیکولهای خورشیدی
Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different de...
متن کاملSpatial simulations of the Kelvin-Helmholtz instability in astrophysical jets
Aims. The long term magnetohydrodynamic stability of magnetized transonic/supersonic jets is numerically investigated using a spatial approach. We focus on two-dimensional linearly-unstable slab configurations where the jet is embedded in a flow-aligned uniform magnetic field of weak amplitude. We compare our results with previous studies using a temporal approach where longitudinally periodic ...
متن کاملEvolution of Kelvin-Helmholtz instabilities in radiative jets II. Shock structure and entrainment properties
We present the results of a 2-D numerical analysis of the stability of radiative supersonic cylindrical jets against Kelvin-Helmholtz instabilities. The numerical scheme employed is a PPM-type code, the boundary conditions are periodic on the longitudinal direction, i.e we adopt a temporal approach; the interface between the jet and the ambient medium is modeled by a smooth velocity and density...
متن کاملEffect of Expansion and Magnetic Field Configuration on Mass Entrainment of Jets
We investigate the growth of jet plus entrained mass in simulations of supermagnetosonic cylindrical and expanding jets. The entrained mass spatially grows in three stages: from an initially slow spatial rate to a faster rate and finally at a flatter rate. These stages roughly coincide with the similar rates of expansion in simulated radio intensity maps, and also appear related to the growth o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997